Homework 1

November 19, 2019

* Homepage of the course: MACHINE LEARNING
¢ Blog of My learning notes
¢ The solution is not necessarily correct.

1 Mathematical Fundamentals, Ridge Regression, Gradient Descent,
and SGD

1.1 Introduction

In this homework you will first solve some probability and linear algebra questions and then you
will implement ridge regression using gradient descent and stochastic gradient descent. We’ve
provided a lot of support Python code to get you started on the right track. References below
to particular functions that you should modify are referring to the support code, which you can
download from the website. If you have time after completing the assighment, you might pursue
some of the following:

¢ Study up on numpy’s broadcasting to see if you can simplify and/or speed up your code.

¢ Think about how you could make the code more modular so that you could easily try dif-
ferent loss functions and step size methods.

¢ Experiment with more sophisticated approaches to setting the step sizes for SGD (e.g. try
out the recommendations in Bottou's SGD Tricks on the website)

¢ Instead of taking 1 data point at a time, as in SGD, try minibatch gradient descent, where you
use multiple points at a time to get your step direction. How does this effect convergence
speed? Are you getting computational speedup as well by using vectorized code?

¢ Advanced: What kind of loss function will give us quantile regression?

Comments

1.2 Mathematical Fundamentals

The following questions are designed to check how prepared you are to take this class. Familiarity
with linear algebra and probability at the level of these questions is expected for the class.

1.2.1 Probability

Let (X3, Xy, -+, X4) have a d-dimensional multivariate Gaussian distribution, with mean vector
€ R? and covariance matrix & € R4, ie. (X1, Xp, -+, Xy) ~ N (4, Z). Use p; to denote the i*"
element of 1 and %;; to denote the element at the i row and j column of X.

1

https://davidrosenberg.github.io/ml2019/#home
https://equationliu.github.io/2019-11-14-ridge/
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

1. Let x,y € R? be two independent samples drawn from A (i, ¥). Give expression for [E||x||3
and E||x — y||5. Express your answer as a function of y and X. ||x||> represents the £,-norm
of vector x.

2. Find the distribution of Z = «; X; + a; X, fori # jand 1 <i,j < d. The answer will belong
to a familiar class of distribution. Report the answer by identifying this class of distribution
and specifying the parameters.

3. (Optional) Assume W and R are two Gaussian distributed random variables. Is W + R still
Gaussian? Justify your answer.

Solution

1.
E[x[7 =) EX} =) (Var(X;) + (EX;)?) = tr(Z) + [|p3
i=1 i=1
Note that E[x — y] = 0, Var(x — y) = Var(x) + Var(y), then

Elx -yl =2-tr(Z)

2. E[Z] = ajp; + ajpj. However, p;, pj is not iid, which means we can’t compute the variance
by

Var(Z) = a;%ii + a7% (1)

Actually, by definition, we can get Var(Z) = a?%; + 06]22]']‘ + 2. But is it still normal?
Sum of normally distributed random variables mentioned that the independence can be
weakened to the assumption that X and Y are jointly, so

Z~N(EZ, Var(2))

Actually, if X; and X; are independent, then X;; = cov(X;, X;) = 0.

3. No! the joint distribution must be normal. For example, Let W ~ N (y,0), R = mW, where
m = 1 with probability 1/2, otherwise m = —1. we can prove that R is also normal, W + R
is not, however.

Simulation

In [43]: import numpy as np
mean = np.array([1, 2, 3, 4, 5])
cov = np.random.rand(5, 5)
Covariance matriz of the distribution.
It must be symmetric and positive—semidefinite for proper sampling.
cov = np.dot(cov, cov.T) # A*A°T must be positive-semidefinite
X = np.random.multivariate_normal (mean, cov, size=40000)

Validation for E||x||3 = tr(Z) + || |3
In [44]: print("bias 1 = ", np.sum(X**2,axis=1) .mean() - (np.trace(cov) + np.sum(mean**2)))

bias 1 = -0.0763274797266

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

Validation for E||x — y||3 =2 tr(X)

In [46]: Y = np.random.multivariate_normal (mean, cov,size=40000)
print("bias 2 = ", np.sum((X-Y)**2,axis=1) .mean() - 2 * np.trace(cov))

bias 2 = 0.0811346722484

Validation for question 2. Leti = 1,j = 3,47 = ap = 0.5, note that u = (1,2,3,4,5), we have
E[Z] =2

In [5]: Var_Z = 0.25 * cov[0,0] + 0.25 * cov[2,2] + 0.5 * cov[0,2]
print("True Variance: ", Var_Z)
Z=0.5% X[:,0] + 0.5 x X[:,2]
Var_Z_sample = (Z**2) .mean() - Z.mean() ** 2
print("Sample Variance: ", Var_Z_sample)

True Variance: 2.02996535883
Sample Variance: 2.02323252829

Visualization of normal distribution of Z

In [6]: import matplotlib.pyplot as plt
Jmatplotlib inline
fig, (ax0, axl) = plt.subplots(nrows=2, figsize=(9, 6))
ax0.hist(Z, 100, density=1, histtype='bar', facecolor='yellowgreen', alpha=0.5)
ax0.set_title('pdf')
axl.hist(Z, 20, density=1, histtype='bar', facecolor='pink',
alpha=0.75, cumulative=True, rwidth=0.8)
axl.set_title("cdf")
fig.subplots_adjust (hspace=0.4)
plt.show()

pdf

03

0.2 A

01 A

D. D T T

cdf

10 4

0.3 1

0.6 1

04

0.2 A

00 4 r

Counterexample for question 3

In [7]: W = np.random.normal(2,2,size=20000)
m = np.random.binomial(1,0.5,20000) - 0.5
R=m=x*xW

In [8]: fig,(ax0,axl,ax2) = plt.subplots(nrows=3,figsize=(12,6))
ax0.hist(W,100,density=1,histtype="'bar',facecolor='blue',alpha=0.5)
ax0.set_title('W')
ax1l.hist(R,100,density=1,histtype='bar',facecolor='yellowgreen',alpha=0.5)
axl.set_title('R')
ax2.hist(W + R,100,density=1,histtype='bar',facecolor="'pink',alpha=0.5)
ax2.set_title("W + R")
fig.subplots_adjust (hspace=0.4)
plt.show()

0.2 1

01

0.0 T T

0.2 4

01 1

0.0 T T

W+R

0.2 1

01

0.0 T T

1.2.2 Linear Algebra

1. Let A be ad x d matrix with rank k. Consider the set S4 := {x € R?|Ax = 0}. What is the
dimension of S 47?

2. Assume S, is a k dimensional subspace in R? and 1,02, -+, U, form an orthonormal basis
of S,. Let w be an arbitrary vector in R?. Find

x* = argmin||w — x||2,
XES,

where ||w — x|| is the Euclidean distance between w and x. Express x* as a function of
v1,02,...,0 and w.
3. (Optional) Continuing from above, x* can be expressed as

x* = Mw,

where M is a d x d matrix. Prove that such an M always exists or more precisely find an
expression for M as a function of v1,v,,--- ,vr. Compute the eigenvalues and one set of
eigenvectors of M corresponding to the nonzero eigenvalues.

Solution

1. dim(S4) = Ker(A) =d —rank(A) =d —k
2. Actually, x* is the orthogonal projection of w. we have

<w-—x*v>=0i=1,2,---,k
At the same time, x* = Y¥_; a;0;, then we can get
k
x* = Z < w,0; > -0;
i=1

5

3. x* = Va, where V = [01,02,- -+, U)ax, & =< W, v; >, S0
x*=Vviw

which means M = VVT. More over, w = (VVT)"1Va. We can easily prove that M? = M.
Let A be the eigenvalue then Mx = Ax, multiply M to both left and right we get

Mx = M?x = AMx

e If Mx =0, then A =0, and dim{x | Mx =0} =d —rank(M) =d — rank(V) = d — k.
e If Mx # 0, then A = 1. It's obvious that Mv; = v;,i =1,2,--- , k.

Simulation Considering the plane 2x + y + z = 0 in the euclidean space R>.

In [9]: from scipy.linalg import x*

a = np.array([[0,-1],[1,0],[-1,2]11)
V = orth(a)
M = np.dot(V,V.T)

eigen_value, vectors = eig(M)
In [10]: eigen_value.real
Out[10]: array([-1.11022302e-16, 1.00000000e+00, 1.00000000e+00])

In [11]: w = np.array([7.5,0, 30])
projection = np.dot(M,w)

In [12]: from mpl_toolkits.mplot3d.axes3d import Axes3D
fig = plt.figure()
axes3d = Axes3D(fig,proj_type="ortho", azim=60,elev=-20)
x = np.linspace(-20,20,100)
y = np.linspace(-20,20,100)
X,Y = np.meshgrid(x,y)
Z=-2xX - Y
X, vy, z = [w[0], projection[0]], [w[i1], projection[1]], [w[2], projection[2]]
axes3d.plot_surface(X,Y,Z, color="green")
axes3d.plot(x, y, z, c='r")

Out[12]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7£77d6d134a8>]

1.3 Linear Regression
1.3.1 Feature Normalization

When feature values differ greatly, we can get much slower rates of convergence of gradient-
based algorithms. Furthermore, when we start using regularization (introduced in a later prob-
lem), features with larger values are treated as more important, which is not usually what you
want. One common approach to feature normalization is perform an affine transformation (i.e.
shift and rescale) on each feature so that all feature values in the training set are in [0, 1]. Each fea-
ture gets its own transformation. We then apply the same transformations to each feature on the
test set. It's important that the transformation is learned on the training set, and then applied to
the test set. It is possible that some transformed test set values will lie outside the [0, 1] interval.

Modify function feature_normalization to normalize all the features to [0,1]. (Can you use
numpy’s broadcasting here?) Note that a feature with constant value cannot be normalized in
this way. Your function should discard features that are constant in the training set.

Solution

In [13]: def feature normalization(train, test):
"""Rescale the data so that each feature in the training set is in
the interval [0,1], and apply the same transformations to the test
set, using the statistics computed on the training set.

Args:
train - training set, a 2D numpy array of size (num_instances, num_features)
test - test set, a 2D numbpy array of size (num_instances, num_features)

Returns:
train_normalized - training set after normalization
test_normalized - test set after nmormalization

"o

num_instances, num_features = train.shape

discard features that are constant

index = np.nonzero(np.all(X_train == X_train[0, :], axis=0))

train = np.delete(train, index, axis=1)

test = np.delete(test, index, axis=1)

Min—-Maxz normalization

div = np.max(X_train, axis=0, keepdims=True) - \
np.min(X_train, axis=0, keepdims=True)

minus = np.min(X_train, axis=0, keepdims=True)

train = (train - minus) / div

test = (test - minus) / div

return train, test

In [14]: from sklearn.model_selection import train_test_split
import pandas as pd

Loading the dataset
print('loading the dataset')

df = pd.read_csv("data.csv", delimiter=',"')
X = df.values[:, :-1]
y = df .values[:, -1]

print('Split into Train and Test')
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=100, random_state=10)
print("Scaling all to [0, 1]")
X_train, X_test = feature_normalization(X_train, X_test)

Add bias term
X_train = np.hstack((X_train, np.ones((X_train.shape[0], 1))))
X_test = np.hstack((X_test, np.ones((X_test.shapel[0], 1))))

loading the dataset
Split into Train and Test
Scaling all to [0, 1]

1.3.2 Gradient Descent Setup

In linear regression, we consider the hypothesis space of linear functions kg : R? — R, where
ho(x) = 07x

for 6,x € R? and we choose 6 that minimizes the following average square loss objective

function:
1 & 2
=—) (ho(x;) —
m =

1

where (x1,Y1), ..., (Xm, Ym) € RY x R is our training data.
While this formulation of linear regression is very convenient, it’s more standard to use a
hypothesis space of affine functions:

hg/b(x) = HTJC + b,

which allows a bias or nonzero intercept term. The standard way to achieve this, while still main-
taining the convenience of the first representation, is to add an extra dimension to x that is always
a fixed value, such as 1. You should convince yourself that this is equivalent. We'll assume this
representation, and thus we’ll actually take 6, x € R9*1.

1. Let X € R"™*(@*+1) be the design matrix, where the i’th row of X is x;. Lety = (yy, ... ,ym)T €
R"*! be the response. Write the objective function J(6) as a matrix/vector expression, with-
out using an explicit summation sign.

2. Write down an expression for the gradient of | (again, as a matrix/vector expression, without
using an explicit summation sign).

3. In our search for a 6 that minimizes |, suppose we take a step from 6 to 6 + nh, where
h € R4 is the step direction (recall, this is not necessarily a unit vector) and 7 € (0,)
is the step size (note that this is not the actual length of the step, which is #||]|). Use the
gradient to write down an approximate expression for the change in objective function value
J(6+) — J(9).

¢ This approximation is called a 1inear or first-order approximation.

4. Write down the expression for updating 6 in the gradient descent algorithm. Let 7 be the
step size.

5. Modify the function compute_square_loss, to compute J() for a given 0. You might want
to create a small dataset for which you can compute J(0) by hand, and verify that your
compute_square_loss function returns the correct value.

6. Modify the function compute_square_loss_gradient, to compute V] (6). You may again
want to use a small dataset to verify that your compute_square_loss_gradient function
returns the correct value.

Solution
1. .
J(0) = —[1X0 - ylI3
> dje) 1d(xe—y)T 2
Qo —m dp - 2AXe-y) = XI(XO—y)

3. We always set h = —V,](6), then we get

(0 + k) ~ J(6) ~ (Vo] (6)"6 ~ — 2 p(6"XT — y") X6

2
i1 =0; —nVe](6;) =6; — E’?XT(X@' -Y)

In [15]: def compute_square_loss(X, y, theta):
Given a set of X, y, theta, compute the average square loss for
predicting y with X*theta.

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label wvector, 1D numpy array of size (num_instances)
theta - the parameter wvector, 1D array of size (num_features)

Returns:
loss — the average square loss, scalar
nwnn
num_instances = X.shapel[0]
bias = np.dot(X, theta) - y.reshape(num_instances, 1)
loss = np.sum(bias ** 2) / num_instances
return loss

In [16]: theta_init = np.random.rand(X_train.shape[1], 1)
compute_square_loss(X_train, y_train, theta_init)

Out[16]: 222.88995536215657

In [17]: def compute_square_loss_gradient(X, y, theta):

nimnn

Compute the gradient of the average square loss (as defined in
compute_square_loss), at the point theta.

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y — the label wvector, 1D numpy array of size (num_instances)
theta - the parameter vector, 1D numpy array of stize (num_features)

Returns:

grad - gradient vector, 1D numpy array of size (num_features)

grad = 2 * np.dot(X.T, np.dot(X, theta) - y.reshape(X.shape[0], 1)) / X.shape[O]
return grad

In [18]: compute_square_loss_gradient(X_train, y_train, theta_init).shape

Out[18]: (49, 1)

10

1.3.3 Gradient Checker
1.3.4 Batch Gradient Descent

At the end of the skeleton code, the data is loaded, split into a training and test set, and nor-
malized. We'll now finish the job of running regression on the training set. Later on we’ll plot
the results together with SGD results. 1. Complete batch_gradient_descent. 2. Now let’s
experiment with the step size. Note that if the step size is too large, gradient descent may
not converge. * For the mathematically inclined, there is a theorem that if the objective func-
tion is convex and differentiable, and the gradient of the objective is Lipschitz continuous with
constant L > 0, then gradient descent converges for fixed steps of size 1/L or smaller. See
https://www.cs.cmu.edu/~ggordon/10725-F12 /scribes /10725_Lecture5.pdf

Starting with a step-size of 0.1, try various different fixed step sizes to see which converges
most quickly and/or which diverge. As a minimum, try step sizes 0.5, 0.1, .05, and .01. Plot the
average square loss as a function of the number of steps for each step size. Briefly summarize your
findings. 3. (Optional) Implement backtracking line search (google it). How does it compare to
the best fixed step-size you found in terms of number of steps? In terms of time? How does the
extra time to run backtracking line search at each step compare to the time it takes to compute the
gradient? (You can also compare the operation counts.)

Solution

In [49]: def batch_grad_descent(X, y, alpha=0.1, num_step=1000, grad_check=False):
In this question you will implement batch gradient descent to
minimize the average square loss objective.

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label vector, 1D numpy array of size (num_instances)
alpha - step size in gradient descent
num_step - number of steps to run
grad_check - a boolean value indicating whether checking the gradient
when updating

Returns:
theta_hist - the history of parameter wector, 2D numpy array of
size (num_step+l, num_features), for instance,
theta in step O should be theta_hist[0], theta in
step (num_step) is theta_hist[-1]
loss_hist - the history of average square loss on the data,
1D numpy array, (num_step+1)
num_instances, num_features = X.shape[0], X.shape[1]
theta_hist = np.zeros((num_step+l, num_features)) # Initialize theta_hist
loss_hist = np.zeros(num_step+l) # Initialize loss_hist
theta = np.zeros((num_features, 1)) # Initialize theta

for step in range(num_step):

11

loss = compute_square_loss(X, y, theta)

theta_hist[step] = theta.T

loss_hist[step] = loss

theta = theta - alpha * compute_square_loss_gradient(X, y, theta)

theta_hist[num_step] = theta.T
loss_hist[num_step] = compute_square_loss(X, y, theta)
return theta_hist, loss_hist

In [50]: theta_hist, loss_hist = batch_grad_descent(

In [51]: def

X_train, y_train, alpha=0.01, num_step=1000)

R_square(y, pred):

y = y.reshape([len(y), 11)

pred = pred.reshape([len(pred), 1])

SS_tol = (y ** 2).mean() - (y.mean()) ** 2
SS_res = sum((y - pred) **x 2) / y.shapel[0]
return 1 - SS_res / SS_tol

In [52]: pred = np.dot(X_train,theta_hist[-1])
print("R"2:" , R_square(y_train, pred))

R"2: [0.63683116]

In [23]: alpha_list = [0.1, 0.055, 0.053, 0.052, 0.051, 0.05, 0.01, 0.001]
loss_hist_alpha = [batch_grad_descent(

X_train, y_train, alpha=alpha, num_step=1000) [1] for alpha in alpha_list]

/home/equation/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:16: RuntimeWarning:
app.launch_new_instance()
/home/equation/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:14: RuntimeWarning:

In [24]: x =
for

plt
plt

plt
plt

plt.
plt.

np.arange(0,1001)
i in range(len(alpha_list)):
plt.plot(x,loss_hist_alphali],label=str(alpha_list[i]))

.title('Average square loss for different step size')
plt.
.ylabel('Loss')
.ylim(0, 20)
.x1im(0, 300)

xlabel('Iterations')

legend ()
show ()

12

Average square loss for different step size

20.0
— 01
17.5 - | 0.055
— 0053
15.0 1 | — 0.052
o | — 0051
' | — (.05
w 1 | 0.01
5 10-0 f — 0.001
DD I I I I I
0 50 100 150 200 250 300

[terations

In [25]: import time

def batch_grad_descent_backtracking(X, y, num_step=1000, t=0.4, beta=0.5,
grad_check=False):
num_instances, num_features = X.shape[0], X.shape[1]
theta_hist = np.zeros((num_step+l, num_features)) # Initialize theta_hist
loss_hist = np.zeros(num_step+l) # Initialize loss_hist
alpha_hist = np.zeros(num_step+1)
theta = np.zeros((num_features, 1)) # Initialize theta
com_grad_time = 0
search_time = 0

for step in range(num_step):
loss = compute_square_loss(X, y, theta)
theta_hist[step] = theta.T
loss_hist[step] = loss
alpha = 1.0
start = time.clock()
grad = compute_square_loss_gradient (X, y, theta)
end = time.clock()
com_grad_time += (end - start)
start = time.clock()
while compute_square_loss(X, y, theta - alpha * grad) > \

13

compute_square_loss(X, y, theta) + t * alpha * np.dot(grad.T, -grad):
alpha = alpha * beta

end = time.clock()
search_time += (end - start)

theta = theta - alpha * grad

alpha_hist[step] = alpha
theta_hist[num_step] = theta.T
alpha_hist[num_step] = alpha

loss_hist[num_step] = compute_square_loss(X, y, theta)

print ("Compute the gradient running time: " + str(com_grad_time))
print ("backtracking line search running time: " + str(search_time))
return theta_hist, loss_hist, alpha_hist

In [26]: theta_hist, loss_hist, alpha_hist = batch_grad_descent_backtracking(
X_train, y_train, num_step=1000)

Compute the gradient running time: 0.018154000000066617
backtracking line search running time: 0.19025799999996806

In [27]: _, loss_fixed_alpha = batch_grad_descent(
X_train, y_train, alpha=0.05, num_step=1000)

In [28]: t_list = [0.1, 0.2, 0.3, 0.4]
loss_backtracking = [batch_grad_descent_backtracking(
X_train, y_train, t=t, num_step=1000) [1] for t in t_list]

Compute the gradient running time: 0.023590000000044853
backtracking line search running time: 0.25139299999993625
Compute the gradient running time: 0.022660000000058744
backtracking line search running time: 0.22858500000004867
Compute the gradient running time: 0.01978599999998565
backtracking line search running time: 0.2026590000000965
Compute the gradient running time: 0.022147999999983625
backtracking line search running time: 0.23027200000003845

In [29]: x = np.arange(0,1001)
for i in range(len(t_list)):
plt.plot(x,loss_backtracking[i],label= "t = " + str(t_list[i]))

plt.plot(x,loss_fixed_alpha,label= "alpha = 0.05")
plt.title('Average square loss for backtracking line search')
plt.xlabel('Iterations')

plt.ylabel('Loss')

14

plt.ylim(0, 10)
plt.x1im(0, 1000)
plt.legend()
plt.show()
Average square loss for backtracking line search
— t=01
t=0.2
8 — t=03
— t =04
— alpha = 0.05%
E -
i
5
4 1
2 - — —
D I I ! I
0 200 400 B00 800 1000

[t=rations

In [30]: alpha_hist = batch_grad_descent_backtracking(

plt
plt
plt
plt
plt
plt

X_train, y_train, t=0.4, num_step=1000) [2]
np.arange (0, 1001)

.plot(x, alpha_hist, 'bo')

.title('Step size of each iteration for backtracking line search')
.xlabel('Iterations')

.ylabel('Step size')

.x1im(0, 1000)

.show()

Compute the gradient running time: 0.01831799999999717
backtracking line search running time: 0.1899860000000011

15

Step size of each iteration for backtracking line search
05{ e ® oe0® & o eee @

0.4 -

0.3

Step size

0.2 1

. _ 1 u . Ll 1. 1l 1.1 1
0.1 1

oo e eee eeeneee e

] 200 400 B0 Bo0 1000
[terations

In [31]: beta_list = [0.25, 0.5, 0.75]
loss_backtracking = [batch_grad_descent_backtracking(
X_train, y_train, t=0.4, beta=beta, num_step=1000) [1] for beta in beta_list]

Compute the gradient running time: 0.02178700000001399
backtracking line search running time: 0.1527189999999905
Compute the gradient running time: 0.021406999999960874
backtracking line search running time: 0.22226199999993312
Compute the gradient running time: 0.021609999999903096
backtracking line search running time: 0.4933860000000294

In [32]: x = np.arange(0,1001)
for i in range(len(beta_list)):
plt.plot(x,loss_backtracking[i],label= "beta = " + str(beta_list[i]))

plt.plot(x,loss_fixed_alpha,label= "alpha = 0.05")
plt.title('Average square loss for backtracking line search')
plt.xlabel('Iterations')

plt.ylabel('Loss')

plt.ylim(0, 10)

plt.x1im(0, 1000)

plt.legend()

plt.show()

16

Average square loss for backtracking line search

10
— heta = 0.25
beta = 0.5
B beta = 0.75
— glpha = 0.05
E -
m
5
4 4
2 .
D T T T T
] 200 400 =00 goa 1000

[t=rations

1.4 Ridge Regression

Linear Regression with ¢, regularization or weight decay.

When we have a large number of features compared to instances, regularization can help con-
trol overfitting. Ridge regression is linear regression with ¢, regularization. The regularization
term is sometimes called a penalty term. The objective function for ridge regression is

1 m
— Y (ho(xi) 21 2070,
i=1

§

where A is the regularization parameter, which controls the degree of regularization. Note that
the bias parameter is being regularized as well. We will address that below.

1. Compute the gradient of J(#) and write down the expression for updating 6 in the gradient
descent algorithm. (Matrix/vector expression)

2. Implement compute_regularized_square_loss_gradient

Implement regularized_grad_descent

4. For regression problems, we may prefer to leave the bias term unregularized. One approach
is to change J(0) so that the bias is separated out from the other parameters and left unreg-
ularized. Another approach that can achieve approximately the same thing is to use a very
large number B, rather than 1, for the extra bias dimension. Explain why making B large
decreases the effective regularization on the bias term, and how we can make that regular-
ization as weak as we like (though not zero).

W

17

5. (Optional) Develop a formal statement of the claim in the previous problem, and prove the

statement.

(Optional) Try various values of B to see what performs best in test.

Now fix B = 1. Choosing a reasonable step-size (or using backtracking line search), find the
6% that minimizes J(0) over a range of A. You should plot the training average square loss
and the test average square loss (just the average square loss part, without the regularization,
in each case) as a function of A. Your goal is to find A that gives the minimum average square
loss on the test set. It’s hard to predict what A that will be, so you should start your search
very broadly, looking over several orders of magnitude. For example,

A e {10—7,10—5,10—3,10—1,1,10,100}

Once you find a range that works better, keep zooming in. You may want to have log(A) on
the x-axis rather than A.

¢ If you like, you may use sklearn to help with the hyperparameter search.

8. What 6 would you select for deployment and why?

1.4.1 Solution

1.

Vo] (0) = %XT(XG —y)+2A0 2)

2
i1 =0; —nVe](6;) =6; — %UXT(X@‘ —y) —2A6;

Equation 2 is called weight-decay in deep learning, where

oE
w; — w; — M50 nAwW;
1

corresponding to the optimization problem

E(w) = E(w) + 5l wl3

In [33]: def compute_regularized_square_loss_gradient(X, y, theta, lambda_reg):

nimnn

Compute the gradient of L2-regularized average square loss function
given X, y and theta

Args:

X - the feature vector, 2D numpy array of size (num_instances, num_features)

y — the label wvector, 1D numpy array of size (num_instances)

theta - the parameter vector, 1D numpy array of stize (num_features)

lambda_reg - the regularization coefficient

Returns:

grad - gradient wvector, 1D numpy array of size (num_features)

18

grad = 2 * np.dot(X.T, np.dot(X, theta) -
y.reshape(X.shape[0], 1)) / X.shapel[0] + 2 * lambda_reg * theta
return grad

In [34]: def regularized_grad_descent(X, y, alpha=0.05, lambda_reg=10+**-2, num_step=1000):
Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label wvector, 1D numpy array of size (num_instances)
alpha - step size in gradient descent
lambda_reg - the regularization coefficient
num_step - number of steps to run

Returns:
theta_hist - the history of parameter wvector, 2D numpy array of size (num_ste
for instance, theta in step O should be theta_hist[0], theta in
loss hist — the history of average square loss function without the regulariz
num_instances, num_features = X.shape[0], X.shape[1]
theta_hist = np.zeros((num_step+l, num_features)) # Initialize theta_hist
loss_hist = np.zeros(num_step+l) # Initialize loss_hist
theta = np.zeros((num_features, 1)) # Initialize theta

for step in range(num_step):
loss = compute_square_loss(X, y, theta)
theta_hist[step] = theta.T
loss_hist[step] = loss
theta = theta - alpha * \
compute_regularized_square_loss_gradient (X, y, theta, lambda_reg)

theta_hist[num_step] = theta.T
loss_hist[num_step] = compute_square_loss(X, y, theta)
return theta_hist, loss_hist

In [35]: theta_hist, loss_fixed_alpha = regularized_grad_descent(
X_train, y_train, alpha=0.05, num_step=1000)

Try various values of B to see what performs best in test.

In [36]: B_list = [0.01, 0.05, 0.1, 1, 9]
num_step = 5000
X = np.arange(0, num_step + 1)
for B in B_list:
X_train[:, -1] = B * np.ones([X_train.shape[0], 1]1)[:, O]
X_test[:, -1] = B * np.ones([X_train.shape[0], 1])[:, 0]
theta_hist, loss_fixed_alpha = regularized_grad_descent(
X_train, y_train, alpha=0.005, lambda_reg=1e-2, num_step=num_step)
test_err = compute_square_loss(
X_test, y_test, theta_hist[-1].reshape([X_train.shape[1], 1]))

19

print("Test loss of B = " + str(B) + " is " + str(test_err))
plt.plot(x, loss_fixed_alpha, label="B = " + str(B))

plt.legend()

.01 is 2.45697156245
.05 is 2.4566659192
.1 is 2.45579424233
is 2.4923145059

is 2.51673821964

Test loss of
Test loss of
Test loss of
Test loss of
Test loss of

0 W oWmw w
]
© =~ O O O

Out[36]: <matplotlib.legend.Legend at 0x7f77b9a81748>

I I I I
0 1000 2000 3000 4000 5000

In [37]: # num_step = 1000
X_train[:, -1] = np.ones([1, X_train.shape[0]])
X_test[:, -1] = np.ones([1, X_train.shape[0]])
lambda_list = [-7, -6, -5, -3, -2, -1, 0, 1, 2]
train_loss = []
test_loss = []
for lamda in lambda_list:
theta_hist, loss_fixed_alpha = regularized_grad_descent(
X_train, y_train, alpha=0.005, lambda_reg=10 #** lamda, num_step=num_step)
test_loss.append(compute_square_loss(
X_test, y_test, theta_hist[-1].reshape([X_train.shape[1], 1])))
train_loss.append(compute_square_loss(X_train, y_train,
theta_hist[-1] .reshape([X_train.shape[1], 1.

20

In [38]: plt.plot(lambda_list,test_loss,label= "test loss")
plt.plot(lambda_list,train_loss,label= "train loss")
plt.legend()

Out [38]: <matplotlib.legend.Legend at 0x7f77b96099e8>

81 — test loss

train loss

1.5 Stochastic Gradient Descent

When the training data set is very large, evaluating the gradient of the objective function can take
a long time, since it requires looking at each training example to take a single gradient step. When
the objective function takes the form of an average of many values, such as

J6) = L A0)

(as it does in the empirical risk), stochastic gradient descent (SGD) can be very effective. In SGD,
rather than taking —V](6) as our step direction, we take —V f;(0) for some i chosen uniformly at
random from {1, ..., m}. The approximation is poor, but we will show it is unbiased.

In machine learning applications, each f;(6) would be the loss on the i th example (and of
course we’d typically write n instead of m, for the number of training points). In practical imple-
mentations for ML, the data points are randomly shuffled, and then we sweep through the whole
training set one by one, and perform an update for each training example individually. One pass
through the data is called an epoch. Note that each epoch of SGD touches as much data as a single
step of batch gradient descent. You can use the same ordering for each epoch, though optionally
you could investigate whether reshuffling after each epoch affects the convergence speed. 1. Show
that the objective function

(ho(x:) —yi)* + 1070

S

Il
—_

J(6) =

21

can be written in the form

i=1

by giving an expression for f;(6) that makes the two expressions equivalent. 2. Show that the
stochastic gradient Vf;(6), for i chosen uniformly at random from {1,...,m}, is an unbiased
estimator of VJ(6). In other words, show that E [V f;(8)] = V]J(0) for any 6. (Hint: It will be
easier, notationally, to prove this for a general J(8) = L Y, £;(6), rather than the specific case of
ridge regression. You can start by writing down an expression for E [V f;(0)]...) 3. Write down the
update rule for § in SGD for the ridge regression objective function.

1.5.1 Solution

1. Let
£i(8) = (he (x;) — yi)* +mAgTo

which would conclude the proof.
2. Differentiate both sides of equation 25 and use the linearity of differentiation

Vi) =, L VA0)

Since the examples are chosen uniformly at random,

M

E[VAi(0)] =} Pi=]) x VA(0) =) - x Vfi(6)

Il
—_
~
Il
—_

]

which would conclude the proof.
3. V£i(0) = 2x;(x] 0 — y;) + 2mAf, then

0ii1=0; —nVfi(0) = 0; — 2nx;(x]6; — y;) — 2ymAS;
In [39]: import math

def GradientAtDatapoint(theta, datapoint, lable, lambda_reg, num_instances):
return 2 * (np.dot(datapoint.T, theta) - lable) * datapoint + 2 * num_instances *

def get_batchs(datasets_order, num_instances, batch_size):
num_batches = num_instances // batch_size
for i in range(num_batches):
yield datasets_order[i * batch_size: (i+1) * batch_size]

Stochastic gradient descent

def stochastic_grad_descent (X, y, alpha=0.01, lambda_reg=10%*-2, num_epoch=1000, batc]

nimnn

22

In this question you will implement stochastic gradient descent with
regularization term

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label wvector, 1D numpy array of size (num_instances)
alpha - string or float, step stize in gradient descent
NOTE: In SGD, it's mot a good tdea to use a fized step stze. Usually
if alpha is a float, then the step size in every step ts the float.
if alpha == "1/sqrt(t)", alpha = 1/sqrt(t).
if alpha == "1/t", alpha = 1/t.
lambda_reg - the regularization coefficient
num_epoch - number of epochs to go through the whole training set
min
num_instances, num_features = X.shape[0], X.shape[1]
theta = np.zeros([num_features, 1]) # Initialize theta

num_batches = num_instances // batch_size

Inittalize theta_hist
theta_hist = np.zeros((num_epoch, num_batches + 1, num_features))

loss_hist = np.zeros((num_epoch, num_batches + 1)) # Initialize loss_hist
TODO
iteration = 1

for epoch in range(num_epoch):

generate initial subscript
datasets_order = list(range(0, num_instances))
np.random.shuffle(datasets_order) # shuffle datasets
batchs = get_batchs(datasets_order, num_instances, batch_size)
for i, batch_order in enumerate(batchs):

loss = compute_square_loss(X, y, theta)

loss_hist[epoch, i] = loss

theta_hist[epoch, i] = theta.T

grad_matrix = np.array([GradientAtDatapoint(theta, X[index] .reshape(
[num_features, 1]), ylindex], lambda_reg, num_instances) for index in
grad = grad_matrix.reshape([batch_size, num_features]) .mean(
axis=0) .reshape ([num_features, 1])

if sqrt_mode:

alpha = C / math.sqrt(iteration)
else:

alpha = C / iteration

theta = theta - alpha * grad
iteration += 1

23

loss = compute_square_loss(X, y, theta)
loss_hist[epoch, num_batches] = loss
theta_hist[epoch, num_batches] = theta.T
return theta_hist, loss_hist

In [53]: X_train[:, -1] = 0.01 * np.ones([1, X_train.shape[0]])
theta_hist, loss_hist = stochastic_grad_descent(
X_train, y_train, num_epoch=1000, C=0.1, batch_size=1, lambda_reg=le-4, sqrt_mode:

1.6 Risk Minimization
1.6.1 Square Loss

1. Let y be a random variable with a known distribution, and consider the square loss function
a,y) = (a— y)z. We want to find the action a* that has minimal risk. That is, we want to
find

at = argmain]E (a—vy)*

where the expectation is with respect to y. Show that a* = Ey, and the Bayes risk (i.e. the
risk of a*) is Var(y). In other words, if you want to try to predict the value of a random
variable, the best you can do (for minimizing expected square loss) is to predict the mean
of the distribution. Your expected loss for predicting the mean will be the variance of the
distribution.

e Hint: Recall that Var(y) = Ey? — (Ey)*.

2. Now let’s introduce an input. Recall that the expected loss or risk of a decision function

f:X = Ais
R(f) = EL(f(x),y)

where (x,y) ~ Pyxy, and the Bayes decision function f* : X — A is a function that
achieves the minimal risk among all possible functions:

R(f) = infR(f)

Here we consider the regression setting, in which A =) = R. We will show for the square
loss £(a,y) = (a —y)?, the Bayes decision function is f*(x) = [E[y|x], where the expectation
is over y. As before, we assume we know the data-generating distribution Py y.

¢ We'll approach this problem by finding the optimal action for any given x. If somebody
tells us x, we know that the corresponding y is coming from the conditional distribution
y | x. For a particular x, what value should we predict (i.e. what action a should we
produce) that has minimal expected loss? Express your answer as a decision function
f(x), which gives the best action for any given x. In mathematical notation, we're
looking for

f*(x) = argminE [(a — y)?|x]

where the expectation is with respect to y. (Hint: There is really nothing to do here
except write down the answer, based on the previous question. But make sure you
understand what’s happening...)

24

e In the previous problem we produced a decision function f*(x) that minimized the risk
for each x. In other words, for any other decision function f(x), f*(x) is going to be at
least as good as f(x), for every single x. In math, we mean

E|(f(x) =y | x| <E[(f(x) -7 %],
for all x. To show that f*(x) is the Bayes decision function, we need to show that
E|(f"(x)—y)’] SE[(fx))]
for any f. Explain why this is true. (Hint: Law of iterated expectations.)

Solution
1. Proof: Recall that Var(y) = Ey? — (Ey)? we have

E(a—y)* = Var(a—y) + [E(a —y)* = Var(y) + (a — Ey)? 3)

which means when a* = Ey, the bayes risk of a* has the minimum value Var(y).

1.6.2 Median Loss

Show that for the absolute loss £(7,y) = |y — 7|, f*(x) is a Bayes decision function if f*(x) is the
median of the conditional distribution of y given x.

¢ Hint: As in the previous section, consider one x at time. It may help to use the following
characterization of a median: m is a median of the distribution for random variable v if
P(y > m) > yand P(y < m) > 5.

Note: This loss function leads to median regression. There are other loss functions that lead
to quantile regression for any chosen quantile. (For partial credit, you may assume that the
distribution of y | x is discrete or continuous. For full credit, no assumptions about the distribu-
tion.)

25

	Mathematical Fundamentals, Ridge Regression, Gradient Descent, and SGD
	Introduction
	Mathematical Fundamentals
	Probability
	Linear Algebra

	Linear Regression
	Feature Normalization
	Gradient Descent Setup
	Gradient Checker
	Batch Gradient Descent

	Ridge Regression
	Solution

	Stochastic Gradient Descent
	Solution

	Risk Minimization
	Square Loss
	Median Loss

