
Homework_1

November 19, 2019

• Homepage of the course: MACHINE LEARNING
• Blog of My learning notes
• The solution is not necessarily correct.

1 Mathematical Fundamentals, Ridge Regression, Gradient Descent,
and SGD

1.1 Introduction

In this homework you will first solve some probability and linear algebra questions and then you
will implement ridge regression using gradient descent and stochastic gradient descent. We’ve
provided a lot of support Python code to get you started on the right track. References below
to particular functions that you should modify are referring to the support code, which you can
download from the website. If you have time after completing the assignment, you might pursue
some of the following:

• Study up on numpy’s broadcasting to see if you can simplify and/or speed up your code.
• Think about how you could make the code more modular so that you could easily try dif-

ferent loss functions and step size methods.
• Experiment with more sophisticated approaches to setting the step sizes for SGD (e.g. try

out the recommendations in Bottou's SGD Tricks on the website)
• Instead of taking 1 data point at a time, as in SGD, try minibatch gradient descent, where you

use multiple points at a time to get your step direction. How does this effect convergence
speed? Are you getting computational speedup as well by using vectorized code?

• Advanced: What kind of loss function will give us quantile regression?

Comments

1.2 Mathematical Fundamentals

The following questions are designed to check how prepared you are to take this class. Familiarity
with linear algebra and probability at the level of these questions is expected for the class.

1.2.1 Probability

Let (X1, X2, · · · , Xd) have a d-dimensional multivariate Gaussian distribution, with mean vector
µ ∈ Rd and covariance matrix Σ ∈ Rd×d, i.e. (X1, X2, · · · , Xd) ∼ N (µ, Σ). Use µi to denote the ith

element of µ and Σij to denote the element at the ith row and jth column of Σ.
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1. Let x, y ∈ Rd be two independent samples drawn from N (µ, Σ). Give expression for E∥x∥2
2

and E∥x− y∥2
2. Express your answer as a function of µ and Σ. ∥x∥2 represents the ℓ2-norm

of vector x.
2. Find the distribution of Z = αiXi + αjXj, for i ̸= j and 1 ≤ i, j ≤ d. The answer will belong

to a familiar class of distribution. Report the answer by identifying this class of distribution
and specifying the parameters.

3. (Optional) Assume W and R are two Gaussian distributed random variables. Is W + R still
Gaussian? Justify your answer.

Solution

1.

E∥x∥2
2 =

n

∑
i=1

EX2
i =

n

∑
i=1

(
Var(Xi) + (EXi)

2) = tr(Σ) + ∥µ∥2
2

Note that E[x− y] = 0, Var(x− y) = Var(x) + Var(y), then

E∥x− y∥2
2 = 2 · tr(Σ)

2. E[Z] = αiµi + αjµj. However, µi, µj is not iid, which means we can’t compute the variance
by

Var(Z) = α2
i Σii + α2

j Σjj (1)

Actually, by definition, we can get Var(Z) = α2
i Σii + α2

j Σjj + 2αiαjΣij. But is it still normal?
Sum of normally distributed random variables mentioned that the independence can be
weakened to the assumption that X and Y are jointly, so

Z ∼ N (EZ, Var(Z))

Actually, if Xi and Xj are independent, then Σij = cov(Xi, Xj) = 0.
3. No! the joint distribution must be normal. For example, Let W ∼ N (µ, σ), R = mW, where

m = 1 with probability 1/2, otherwise m = −1. we can prove that R is also normal, W + R
is not, however.

Simulation

In [43]: import numpy as np
mean = np.array([1, 2, 3, 4, 5])
cov = np.random.rand(5, 5)
# Covariance matrix of the distribution.
# It must be symmetric and positive-semidefinite for proper sampling.
cov = np.dot(cov, cov.T) # A*A^T must be positive-semidefinite
X = np.random.multivariate_normal(mean, cov, size=40000)

Validation for E∥x∥2
2 = tr(Σ) + ∥µ∥2

2

In [44]: print("bias 1 = ", np.sum(X**2,axis=1).mean() - (np.trace(cov) + np.sum(mean**2)))

bias 1 = -0.0763274797266
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Validation for E||x− y||22 = 2 · tr(Σ)

In [46]: Y = np.random.multivariate_normal(mean, cov,size=40000)
print("bias 2 = ", np.sum((X-Y)**2,axis=1).mean() - 2 * np.trace(cov))

bias 2 = 0.0811346722484

Validation for question 2. Let i = 1, j = 3, α1 = α2 = 0.5, note that µ = (1, 2, 3, 4, 5), we have
E[Z] = 2

In [5]: Var_Z = 0.25 * cov[0,0] + 0.25 * cov[2,2] + 0.5 * cov[0,2]
print("True Variance: ", Var_Z)
Z = 0.5 * X[:,0] + 0.5 * X[:,2]
Var_Z_sample = (Z**2).mean() - Z.mean() ** 2
print("Sample Variance: ", Var_Z_sample)

True Variance: 2.02996535883
Sample Variance: 2.02323252829

Visualization of normal distribution of Z

In [6]: import matplotlib.pyplot as plt
%matplotlib inline
fig, (ax0, ax1) = plt.subplots(nrows=2, figsize=(9, 6))
ax0.hist(Z, 100, density=1, histtype='bar', facecolor='yellowgreen', alpha=0.5)
ax0.set_title('pdf')
ax1.hist(Z, 20, density=1, histtype='bar', facecolor='pink',

alpha=0.75, cumulative=True, rwidth=0.8)
ax1.set_title("cdf")
fig.subplots_adjust(hspace=0.4)
plt.show()
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Counterexample for question 3

In [7]: W = np.random.normal(2,2,size=20000)
m = np.random.binomial(1,0.5,20000) - 0.5
R = m * W

In [8]: fig,(ax0,ax1,ax2) = plt.subplots(nrows=3,figsize=(12,6))
ax0.hist(W,100,density=1,histtype='bar',facecolor='blue',alpha=0.5)
ax0.set_title('W')
ax1.hist(R,100,density=1,histtype='bar',facecolor='yellowgreen',alpha=0.5)
ax1.set_title('R')
ax2.hist(W + R,100,density=1,histtype='bar',facecolor='pink',alpha=0.5)
ax2.set_title("W + R")
fig.subplots_adjust(hspace=0.4)
plt.show()
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1.2.2 Linear Algebra

1. Let A be a d× d matrix with rank k. Consider the set SA := {x ∈ Rd|Ax = 0}. What is the
dimension of SA?

2. Assume Sv is a k dimensional subspace in Rd and v1, v2, · · · , vk form an orthonormal basis
of Sv. Let w be an arbitrary vector in Rd. Find

x∗ = argmin
x∈Sv

∥w− x∥2,

where ∥w − x∥2 is the Euclidean distance between w and x. Express x∗ as a function of
v1, v2, . . . , vk and w.

3. (Optional) Continuing from above, x∗ can be expressed as

x∗ = Mw,

where M is a d × d matrix. Prove that such an M always exists or more precisely find an
expression for M as a function of v1, v2, · · · , vk. Compute the eigenvalues and one set of
eigenvectors of M corresponding to the nonzero eigenvalues.

Solution

1. dim(SA) = Ker(A) = d− rank(A) = d− k
2. Actually, x∗ is the orthogonal projection of w. we have

< w− x∗, vi > = 0, i = 1, 2, · · · , k

At the same time, x∗ = ∑k
i=1 αivi, then we can get

x∗ =
k

∑
i=1

< w, vi > ·vi
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3. x∗ = Vα, where V = [v1, v2, · · · , vk]d×k, αi =< w, vi >, so

x∗ = VVTw

which means M = VVT. More over, w = (VVT)−1Vα. We can easily prove that M2 = M.
Let λ be the eigenvalue then Mx = λx, multiply M to both left and right we get

Mx = M2x = λMx

• If Mx = 0, then λ = 0, and dim{x | Mx = 0} = d− rank(M) = d− rank(V) = d− k.
• If Mx ̸= 0, then λ = 1. It’s obvious that Mvi = vi, i = 1, 2, · · · , k.

Simulation Considering the plane 2x + y + z = 0 in the euclidean space R3.

In [9]: from scipy.linalg import *
a = np.array([[0,-1],[1,0],[-1,2]])
V = orth(a)
M = np.dot(V,V.T)
eigen_value, vectors = eig(M)

In [10]: eigen_value.real

Out[10]: array([ -1.11022302e-16, 1.00000000e+00, 1.00000000e+00])

In [11]: w = np.array([7.5,0, 30])
projection = np.dot(M,w)

In [12]: from mpl_toolkits.mplot3d.axes3d import Axes3D
fig = plt.figure()
axes3d = Axes3D(fig,proj_type="ortho", azim=60,elev=-20)
x = np.linspace(-20,20,100)
y = np.linspace(-20,20,100)
X,Y = np.meshgrid(x,y)
Z = -2*X - Y
x, y, z = [w[0], projection[0]], [w[1], projection[1]], [w[2], projection[2]]
axes3d.plot_surface(X,Y,Z, color="green")
axes3d.plot(x, y, z, c='r')

Out[12]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7f77d6d134a8>]
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1.3 Linear Regression

1.3.1 Feature Normalization

When feature values differ greatly, we can get much slower rates of convergence of gradient-
based algorithms. Furthermore, when we start using regularization (introduced in a later prob-
lem), features with larger values are treated as more important, which is not usually what you
want. One common approach to feature normalization is perform an affine transformation (i.e.
shift and rescale) on each feature so that all feature values in the training set are in [0, 1]. Each fea-
ture gets its own transformation. We then apply the same transformations to each feature on the
test set. It’s important that the transformation is learned on the training set, and then applied to
the test set. It is possible that some transformed test set values will lie outside the [0, 1] interval.

Modify function feature_normalization to normalize all the features to [0, 1]. (Can you use
numpy’s broadcasting here?) Note that a feature with constant value cannot be normalized in
this way. Your function should discard features that are constant in the training set.

Solution

In [13]: def feature_normalization(train, test):
"""Rescale the data so that each feature in the training set is in
the interval [0,1], and apply the same transformations to the test
set, using the statistics computed on the training set.
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Args:
train - training set, a 2D numpy array of size (num_instances, num_features)
test - test set, a 2D num5py array of size (num_instances, num_features)

Returns:
train_normalized - training set after normalization
test_normalized - test set after normalization

"""
num_instances, num_features = train.shape
# discard features that are constant
index = np.nonzero(np.all(X_train == X_train[0, :], axis=0))
train = np.delete(train, index, axis=1)
test = np.delete(test, index, axis=1)
# Min-Max normalization
div = np.max(X_train, axis=0, keepdims=True) - \

np.min(X_train, axis=0, keepdims=True)
minus = np.min(X_train, axis=0, keepdims=True)
train = (train - minus) / div
test = (test - minus) / div
return train, test

In [14]: from sklearn.model_selection import train_test_split
import pandas as pd

# Loading the dataset
print('loading the dataset')

df = pd.read_csv("data.csv", delimiter=',')
X = df.values[:, :-1]
y = df.values[:, -1]

print('Split into Train and Test')
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=100, random_state=10)
print("Scaling all to [0, 1]")
X_train, X_test = feature_normalization(X_train, X_test)

# Add bias term
X_train = np.hstack((X_train, np.ones((X_train.shape[0], 1))))
X_test = np.hstack((X_test, np.ones((X_test.shape[0], 1))))

loading the dataset
Split into Train and Test
Scaling all to [0, 1]
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1.3.2 Gradient Descent Setup

In linear regression, we consider the hypothesis space of linear functions hθ : Rd → R, where

hθ(x) = θTx

for θ, x ∈ Rd, and we choose θ that minimizes the following average square loss objective
function:

J(θ) =
1
m

m

∑
i=1

(hθ(xi)− yi)
2

where (x1, y1), . . . , (xm, ym) ∈ Rd ×R is our training data.
While this formulation of linear regression is very convenient, it’s more standard to use a

hypothesis space of affine functions:

hθ,b(x) = θTx + b,

which allows a bias or nonzero intercept term. The standard way to achieve this, while still main-
taining the convenience of the first representation, is to add an extra dimension to x that is always
a fixed value, such as 1. You should convince yourself that this is equivalent. We’ll assume this
representation, and thus we’ll actually take θ, x ∈ Rd+1.

1. Let X ∈ Rm×(d+1) be the design matrix, where the i’th row of X is xi. Let y = (y1, . . . , ym)
T ∈

Rm×1 be the response. Write the objective function J(θ) as a matrix/vector expression, with-
out using an explicit summation sign.

2. Write down an expression for the gradient of J (again, as a matrix/vector expression, without
using an explicit summation sign).

3. In our search for a θ that minimizes J, suppose we take a step from θ to θ + ηh, where
h ∈ Rd+1 is the step direction (recall, this is not necessarily a unit vector) and η ∈ (0, ∞)
is the step size (note that this is not the actual length of the step, which is η∥h∥). Use the
gradient to write down an approximate expression for the change in objective function value
J(θ + ηh)− J(θ).

• This approximation is called a linear or first-order approximation.

4. Write down the expression for updating θ in the gradient descent algorithm. Let η be the
step size.

5. Modify the function compute_square_loss, to compute J(θ) for a given θ. You might want
to create a small dataset for which you can compute J(θ) by hand, and verify that your
compute_square_loss function returns the correct value.

6. Modify the function compute_square_loss_gradient, to compute ∇θ J(θ). You may again
want to use a small dataset to verify that your compute_square_loss_gradient function
returns the correct value.

Solution

1.
J(θ) =

1
m
∥Xθ − y∥2

2

2.
dJ(θ)

dθ
=

1
m

d(Xθ − y)T

dθ
· 2(Xθ − y) =

2
m

XT(Xθ − y)
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3. We always set h = −∇θ J(θ), then we get

J(θ + ηh)− J(θ) ≈ −η(∇θ J(θ))Tθ ≈ − 2
m

η(θTXT − yT)Xθ

4.
θi+1 = θi − η∇θ J(θi) = θi −

2
m

ηXT(Xθi − y)

In [15]: def compute_square_loss(X, y, theta):
"""
Given a set of X, y, theta, compute the average square loss for
predicting y with X*theta.

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label vector, 1D numpy array of size (num_instances)
theta - the parameter vector, 1D array of size (num_features)

Returns:
loss - the average square loss, scalar

"""
num_instances = X.shape[0]
bias = np.dot(X, theta) - y.reshape(num_instances, 1)
loss = np.sum(bias ** 2) / num_instances
return loss

In [16]: theta_init = np.random.rand(X_train.shape[1], 1)
compute_square_loss(X_train, y_train, theta_init)

Out[16]: 222.88995536215657

In [17]: def compute_square_loss_gradient(X, y, theta):
"""
Compute the gradient of the average square loss (as defined in
compute_square_loss), at the point theta.

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label vector, 1D numpy array of size (num_instances)
theta - the parameter vector, 1D numpy array of size (num_features)

Returns:
grad - gradient vector, 1D numpy array of size (num_features)

"""
grad = 2 * np.dot(X.T, np.dot(X, theta) - y.reshape(X.shape[0], 1)) / X.shape[0]
return grad

In [18]: compute_square_loss_gradient(X_train, y_train, theta_init).shape

Out[18]: (49, 1)
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1.3.3 Gradient Checker

1.3.4 Batch Gradient Descent

At the end of the skeleton code, the data is loaded, split into a training and test set, and nor-
malized. We’ll now finish the job of running regression on the training set. Later on we’ll plot
the results together with SGD results. 1. Complete batch_gradient_descent. 2. Now let’s
experiment with the step size. Note that if the step size is too large, gradient descent may
not converge. * For the mathematically inclined, there is a theorem that if the objective func-
tion is convex and differentiable, and the gradient of the objective is Lipschitz continuous with
constant L > 0, then gradient descent converges for fixed steps of size 1/L or smaller. See
https://www.cs.cmu.edu/~ggordon/10725-F12/scribes/10725_Lecture5.pdf

Starting with a step-size of 0.1, try various different fixed step sizes to see which converges
most quickly and/or which diverge. As a minimum, try step sizes 0.5, 0.1, .05, and .01. Plot the
average square loss as a function of the number of steps for each step size. Briefly summarize your
findings. 3. (Optional) Implement backtracking line search (google it). How does it compare to
the best fixed step-size you found in terms of number of steps? In terms of time? How does the
extra time to run backtracking line search at each step compare to the time it takes to compute the
gradient? (You can also compare the operation counts.)

Solution

In [49]: def batch_grad_descent(X, y, alpha=0.1, num_step=1000, grad_check=False):
"""
In this question you will implement batch gradient descent to
minimize the average square loss objective.

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label vector, 1D numpy array of size (num_instances)
alpha - step size in gradient descent
num_step - number of steps to run
grad_check - a boolean value indicating whether checking the gradient

when updating

Returns:
theta_hist - the history of parameter vector, 2D numpy array of

size (num_step+1, num_features),for instance,
theta in step 0 should be theta_hist[0], theta in
step (num_step) is theta_hist[-1]

loss_hist - the history of average square loss on the data,
1D numpy array, (num_step+1)

"""
num_instances, num_features = X.shape[0], X.shape[1]
theta_hist = np.zeros((num_step+1, num_features)) # Initialize theta_hist
loss_hist = np.zeros(num_step+1) # Initialize loss_hist
theta = np.zeros((num_features, 1)) # Initialize theta

for step in range(num_step):
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loss = compute_square_loss(X, y, theta)
theta_hist[step] = theta.T
loss_hist[step] = loss
theta = theta - alpha * compute_square_loss_gradient(X, y, theta)

theta_hist[num_step] = theta.T
loss_hist[num_step] = compute_square_loss(X, y, theta)
return theta_hist, loss_hist

In [50]: theta_hist, loss_hist = batch_grad_descent(
X_train, y_train, alpha=0.01, num_step=1000)

In [51]: def R_square(y, pred):
y = y.reshape([len(y), 1])
pred = pred.reshape([len(pred), 1])
SS_tol = (y ** 2).mean() - (y.mean()) ** 2
SS_res = sum((y - pred) ** 2) / y.shape[0]
return 1 - SS_res / SS_tol

In [52]: pred = np.dot(X_train,theta_hist[-1])
print("R^2:" , R_square(y_train, pred))

Rˆ2: [ 0.63683116]

In [23]: alpha_list = [0.1, 0.055, 0.053, 0.052, 0.051, 0.05, 0.01, 0.001]
loss_hist_alpha = [batch_grad_descent(

X_train, y_train, alpha=alpha, num_step=1000)[1] for alpha in alpha_list]

/home/equation/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:16: RuntimeWarning: overflow encountered in square
app.launch_new_instance()

/home/equation/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:14: RuntimeWarning: overflow encountered in multiply

In [24]: x = np.arange(0,1001)
for i in range(len(alpha_list)):

plt.plot(x,loss_hist_alpha[i],label=str(alpha_list[i]))

plt.title('Average square loss for different step size')
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.ylim(0, 20)
plt.xlim(0, 300)
plt.legend()
plt.show()

12



In [25]: import time

def batch_grad_descent_backtracking(X, y, num_step=1000, t=0.4, beta=0.5,
grad_check=False):

num_instances, num_features = X.shape[0], X.shape[1]
theta_hist = np.zeros((num_step+1, num_features)) # Initialize theta_hist
loss_hist = np.zeros(num_step+1) # Initialize loss_hist
alpha_hist = np.zeros(num_step+1)
theta = np.zeros((num_features, 1)) # Initialize theta
com_grad_time = 0
search_time = 0

for step in range(num_step):
loss = compute_square_loss(X, y, theta)
theta_hist[step] = theta.T
loss_hist[step] = loss
alpha = 1.0
start = time.clock()
grad = compute_square_loss_gradient(X, y, theta)
end = time.clock()
com_grad_time += (end - start)
start = time.clock()
while compute_square_loss(X, y, theta - alpha * grad) > \
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compute_square_loss(X, y, theta) + t * alpha * np.dot(grad.T, -grad):
alpha = alpha * beta

end = time.clock()
search_time += (end - start)

theta = theta - alpha * grad
alpha_hist[step] = alpha

theta_hist[num_step] = theta.T
alpha_hist[num_step] = alpha
loss_hist[num_step] = compute_square_loss(X, y, theta)

print("Compute the gradient running time: " + str(com_grad_time))
print("backtracking line search running time: " + str(search_time))
return theta_hist, loss_hist, alpha_hist

In [26]: theta_hist, loss_hist, alpha_hist = batch_grad_descent_backtracking(
X_train, y_train, num_step=1000)

Compute the gradient running time: 0.018154000000066617
backtracking line search running time: 0.19025799999996806

In [27]: _, loss_fixed_alpha = batch_grad_descent(
X_train, y_train, alpha=0.05, num_step=1000)

In [28]: t_list = [0.1, 0.2, 0.3, 0.4]
loss_backtracking = [batch_grad_descent_backtracking(

X_train, y_train, t=t, num_step=1000)[1] for t in t_list]

Compute the gradient running time: 0.023590000000044853
backtracking line search running time: 0.25139299999993625
Compute the gradient running time: 0.022660000000058744
backtracking line search running time: 0.22858500000004867
Compute the gradient running time: 0.01978599999998565
backtracking line search running time: 0.2026590000000965
Compute the gradient running time: 0.022147999999983625
backtracking line search running time: 0.23027200000003845

In [29]: x = np.arange(0,1001)
for i in range(len(t_list)):

plt.plot(x,loss_backtracking[i],label= "t = " + str(t_list[i]))

plt.plot(x,loss_fixed_alpha,label= "alpha = 0.05" )
plt.title('Average square loss for backtracking line search')
plt.xlabel('Iterations')
plt.ylabel('Loss')
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plt.ylim(0, 10)
plt.xlim(0, 1000)
plt.legend()
plt.show()

In [30]: alpha_hist = batch_grad_descent_backtracking(
X_train, y_train, t=0.4, num_step=1000)[2]

x = np.arange(0, 1001)

plt.plot(x, alpha_hist, 'bo')
plt.title('Step size of each iteration for backtracking line search')
plt.xlabel('Iterations')
plt.ylabel('Step size')
plt.xlim(0, 1000)
plt.show()

Compute the gradient running time: 0.01831799999999717
backtracking line search running time: 0.1899860000000011
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In [31]: beta_list = [0.25, 0.5, 0.75]
loss_backtracking = [batch_grad_descent_backtracking(

X_train, y_train, t=0.4, beta=beta, num_step=1000)[1] for beta in beta_list]

Compute the gradient running time: 0.02178700000001399
backtracking line search running time: 0.1527189999999905
Compute the gradient running time: 0.021406999999960874
backtracking line search running time: 0.22226199999993312
Compute the gradient running time: 0.021609999999903096
backtracking line search running time: 0.4933860000000294

In [32]: x = np.arange(0,1001)
for i in range(len(beta_list)):

plt.plot(x,loss_backtracking[i],label= "beta = " + str(beta_list[i]))

plt.plot(x,loss_fixed_alpha,label= "alpha = 0.05" )
plt.title('Average square loss for backtracking line search')
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.ylim(0, 10)
plt.xlim(0, 1000)
plt.legend()
plt.show()

16



1.4 Ridge Regression

Linear Regression with ℓ2 regularization or weight decay.
When we have a large number of features compared to instances, regularization can help con-

trol overfitting. Ridge regression is linear regression with ℓ2 regularization. The regularization
term is sometimes called a penalty term. The objective function for ridge regression is

J(θ) =
1
m

m

∑
i=1

(hθ(xi)− yi)
2 + λθTθ,

where λ is the regularization parameter, which controls the degree of regularization. Note that
the bias parameter is being regularized as well. We will address that below.

1. Compute the gradient of J(θ) and write down the expression for updating θ in the gradient
descent algorithm. (Matrix/vector expression)

2. Implement compute_regularized_square_loss_gradient
3. Implement regularized_grad_descent
4. For regression problems, we may prefer to leave the bias term unregularized. One approach

is to change J(θ) so that the bias is separated out from the other parameters and left unreg-
ularized. Another approach that can achieve approximately the same thing is to use a very
large number B, rather than 1, for the extra bias dimension. Explain why making B large
decreases the effective regularization on the bias term, and how we can make that regular-
ization as weak as we like (though not zero).
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5. (Optional) Develop a formal statement of the claim in the previous problem, and prove the
statement.

6. (Optional) Try various values of B to see what performs best in test.
7. Now fix B = 1. Choosing a reasonable step-size (or using backtracking line search), find the

θ∗λ that minimizes J(θ) over a range of λ. You should plot the training average square loss
and the test average square loss (just the average square loss part, without the regularization,
in each case) as a function of λ. Your goal is to find λ that gives the minimum average square
loss on the test set. It’s hard to predict what λ that will be, so you should start your search
very broadly, looking over several orders of magnitude. For example,

λ ∈
{

10−7, 10−5, 10−3, 10−1, 1, 10, 100
}

Once you find a range that works better, keep zooming in. You may want to have log(λ) on
the x-axis rather than λ.

• If you like, you may use sklearn to help with the hyperparameter search.

8. What θ would you select for deployment and why?

1.4.1 Solution

1.
∇θ J(θ) =

2
m

XT(Xθ − y) + 2λθ (2)

θi+1 = θi − η∇θ J(θi) = θi −
2
m

ηXT(Xθi − y)− 2λθi

Equation 2 is called weight-decay in deep learning, where

wi ← wi − η
∂E
∂wi
− ηλwi

corresponding to the optimization problem

Ẽ(w) = E(w) +
λ

2
∥w∥2

2

In [33]: def compute_regularized_square_loss_gradient(X, y, theta, lambda_reg):
"""
Compute the gradient of L2-regularized average square loss function
given X, y and theta

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label vector, 1D numpy array of size (num_instances)
theta - the parameter vector, 1D numpy array of size (num_features)
lambda_reg - the regularization coefficient

Returns:
grad - gradient vector, 1D numpy array of size (num_features)

"""
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grad = 2 * np.dot(X.T, np.dot(X, theta) -
y.reshape(X.shape[0], 1)) / X.shape[0] + 2 * lambda_reg * theta

return grad

In [34]: def regularized_grad_descent(X, y, alpha=0.05, lambda_reg=10**-2, num_step=1000):
"""
Args:

X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label vector, 1D numpy array of size (num_instances)
alpha - step size in gradient descent
lambda_reg - the regularization coefficient
num_step - number of steps to run

Returns:
theta_hist - the history of parameter vector, 2D numpy array of size (num_step+1, num_features)

for instance, theta in step 0 should be theta_hist[0], theta in step (num_step+1) is theta_hist[-1]
loss hist - the history of average square loss function without the regularization term, 1D numpy array.

"""
num_instances, num_features = X.shape[0], X.shape[1]
theta_hist = np.zeros((num_step+1, num_features)) # Initialize theta_hist
loss_hist = np.zeros(num_step+1) # Initialize loss_hist
theta = np.zeros((num_features, 1)) # Initialize theta

for step in range(num_step):
loss = compute_square_loss(X, y, theta)
theta_hist[step] = theta.T
loss_hist[step] = loss
theta = theta - alpha * \

compute_regularized_square_loss_gradient(X, y, theta, lambda_reg)

theta_hist[num_step] = theta.T
loss_hist[num_step] = compute_square_loss(X, y, theta)
return theta_hist, loss_hist

In [35]: theta_hist, loss_fixed_alpha = regularized_grad_descent(
X_train, y_train, alpha=0.05, num_step=1000)

Try various values of B to see what performs best in test.

In [36]: B_list = [0.01, 0.05, 0.1, 1, 9]
num_step = 5000
x = np.arange(0, num_step + 1)
for B in B_list:

X_train[:, -1] = B * np.ones([X_train.shape[0], 1])[:, 0]
X_test[:, -1] = B * np.ones([X_train.shape[0], 1])[:, 0]
theta_hist, loss_fixed_alpha = regularized_grad_descent(

X_train, y_train, alpha=0.005, lambda_reg=1e-2, num_step=num_step)
test_err = compute_square_loss(

X_test, y_test, theta_hist[-1].reshape([X_train.shape[1], 1]))
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print("Test loss of B = " + str(B) + " is " + str(test_err))
plt.plot(x, loss_fixed_alpha, label="B = " + str(B))

plt.legend()

Test loss of B = 0.01 is 2.45697156245
Test loss of B = 0.05 is 2.4566659192
Test loss of B = 0.1 is 2.45579424233
Test loss of B = 1 is 2.4923145059
Test loss of B = 9 is 2.51673821964

Out[36]: <matplotlib.legend.Legend at 0x7f77b9a81748>

In [37]: # num_step = 1000
X_train[:, -1] = np.ones([1, X_train.shape[0]])
X_test[:, -1] = np.ones([1, X_train.shape[0]])
lambda_list = [-7, -6, -5, -3, -2, -1, 0, 1, 2]
train_loss = []
test_loss = []
for lamda in lambda_list:

theta_hist, loss_fixed_alpha = regularized_grad_descent(
X_train, y_train, alpha=0.005, lambda_reg=10 ** lamda, num_step=num_step)

test_loss.append(compute_square_loss(
X_test, y_test, theta_hist[-1].reshape([X_train.shape[1], 1])))

train_loss.append(compute_square_loss(X_train, y_train,
theta_hist[-1].reshape([X_train.shape[1], 1])))
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In [38]: plt.plot(lambda_list,test_loss,label= "test loss")
plt.plot(lambda_list,train_loss,label= "train loss")
plt.legend()

Out[38]: <matplotlib.legend.Legend at 0x7f77b96099e8>

1.5 Stochastic Gradient Descent

When the training data set is very large, evaluating the gradient of the objective function can take
a long time, since it requires looking at each training example to take a single gradient step. When
the objective function takes the form of an average of many values, such as

J(θ) =
1
m

m

∑
i=1

fi(θ)

(as it does in the empirical risk), stochastic gradient descent (SGD) can be very effective. In SGD,
rather than taking −∇J(θ) as our step direction, we take −∇ fi(θ) for some i chosen uniformly at
random from {1, . . . , m}. The approximation is poor, but we will show it is unbiased.

In machine learning applications, each fi(θ) would be the loss on the i th example (and of
course we’d typically write n instead of m, for the number of training points). In practical imple-
mentations for ML, the data points are randomly shuffled, and then we sweep through the whole
training set one by one, and perform an update for each training example individually. One pass
through the data is called an epoch. Note that each epoch of SGD touches as much data as a single
step of batch gradient descent. You can use the same ordering for each epoch, though optionally
you could investigate whether reshuffling after each epoch affects the convergence speed. 1. Show
that the objective function

J(θ) =
1
m

m

∑
i=1

(hθ(xi)− yi)
2 + λθTθ
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can be written in the form

J(θ) =
1
m

m

∑
i=1

fi(θ)

by giving an expression for fi(θ) that makes the two expressions equivalent. 2. Show that the
stochastic gradient ∇ fi(θ), for i chosen uniformly at random from {1, . . . , m}, is an unbiased
estimator of ∇J(θ). In other words, show that E [∇ fi(θ)] = ∇J(θ) for any θ. (Hint: It will be
easier, notationally, to prove this for a general J(θ) = 1

m ∑m
i=1 fi(θ), rather than the specific case of

ridge regression. You can start by writing down an expression for E [∇ fi(θ)]...) 3. Write down the
update rule for θ in SGD for the ridge regression objective function.

1.5.1 Solution

1. Let
fi(θ) = (hθ (xi)− yi)

2 + mλθTθ

which would conclude the proof.
2. Differentiate both sides of equation 25 and use the linearity of differentiation

∇J(θ) =
1
m

m

∑
i=1
∇ fi(θ)

Since the examples are chosen uniformly at random,

E [∇ fi(θ)] =
m

∑
j=1

P(i = j)×∇ fi(θ) =
m

∑
j=1

1
m
×∇ fi(θ)

which would conclude the proof.
3. ∇ fi(θ) = 2xi(xT

i θ − yi) + 2mλθ, then

θi+1 = θi − η∇ fi(θ) = θi − 2ηxi(xT
i θi − yi)− 2ηmλθi

In [39]: import math

def GradientAtDatapoint(theta, datapoint, lable, lambda_reg, num_instances):
return 2 * (np.dot(datapoint.T, theta) - lable) * datapoint + 2 * num_instances * lambda_reg * theta

def get_batchs(datasets_order, num_instances, batch_size):
num_batches = num_instances // batch_size
for i in range(num_batches):

yield datasets_order[i * batch_size: (i+1) * batch_size]

# Stochastic gradient descent

def stochastic_grad_descent(X, y, alpha=0.01, lambda_reg=10**-2, num_epoch=1000, batch_size=1, C=0.1, sqrt_mode=False):
"""
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In this question you will implement stochastic gradient descent with
regularization term

Args:
X - the feature vector, 2D numpy array of size (num_instances, num_features)
y - the label vector, 1D numpy array of size (num_instances)
alpha - string or float, step size in gradient descent

NOTE: In SGD, it's not a good idea to use a fixed step size. Usually it's set to 1/sqrt(t) or 1/t
if alpha is a float, then the step size in every step is the float.
if alpha == "1/sqrt(t)", alpha = 1/sqrt(t).
if alpha == "1/t", alpha = 1/t.

lambda_reg - the regularization coefficient
num_epoch - number of epochs to go through the whole training set

"""
num_instances, num_features = X.shape[0], X.shape[1]
theta = np.zeros([num_features, 1]) # Initialize theta

num_batches = num_instances // batch_size

# Initialize theta_hist
theta_hist = np.zeros((num_epoch, num_batches + 1, num_features))
loss_hist = np.zeros((num_epoch, num_batches + 1)) # Initialize loss_hist
# TODO
iteration = 1
for epoch in range(num_epoch):

# generate initial subscript
datasets_order = list(range(0, num_instances))
np.random.shuffle(datasets_order) # shuffle datasets
batchs = get_batchs(datasets_order, num_instances, batch_size)
for i, batch_order in enumerate(batchs):

loss = compute_square_loss(X, y, theta)
loss_hist[epoch, i] = loss
theta_hist[epoch, i] = theta.T

grad_matrix = np.array([GradientAtDatapoint(theta, X[index].reshape(
[num_features, 1]), y[index], lambda_reg, num_instances) for index in batch_order])

grad = grad_matrix.reshape([batch_size, num_features]).mean(
axis=0).reshape([num_features, 1])

if sqrt_mode:
alpha = C / math.sqrt(iteration)

else:
alpha = C / iteration

theta = theta - alpha * grad
iteration += 1
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loss = compute_square_loss(X, y, theta)
loss_hist[epoch, num_batches] = loss
theta_hist[epoch, num_batches] = theta.T
return theta_hist, loss_hist

In [53]: X_train[:, -1] = 0.01 * np.ones([1, X_train.shape[0]])
theta_hist, loss_hist = stochastic_grad_descent(

X_train, y_train, num_epoch=1000, C=0.1, batch_size=1, lambda_reg=1e-4, sqrt_mode=True)

1.6 Risk Minimization

1.6.1 Square Loss

1. Let y be a random variable with a known distribution, and consider the square loss function
ℓ(a, y) = (a− y)2. We want to find the action a∗ that has minimal risk. That is, we want to
find

a∗ = arg min
a

E (a− y)2

where the expectation is with respect to y. Show that a∗ = Ey, and the Bayes risk (i.e. the
risk of a∗) is Var(y). In other words, if you want to try to predict the value of a random
variable, the best you can do (for minimizing expected square loss) is to predict the mean
of the distribution. Your expected loss for predicting the mean will be the variance of the
distribution.

• Hint: Recall that Var(y) = Ey2 − (Ey)2.

2. Now let’s introduce an input. Recall that the expected loss or risk of a decision function
f : X → A is

R( f ) = Eℓ( f (x), y)

where (x, y) ∼ PX×Y , and the Bayes decision function f ∗ : X → A is a function that
achieves the minimal risk among all possible functions:

R ( f ∗) = inf
f

R( f )

Here we consider the regression setting, in which A = Y = R. We will show for the square
loss ℓ(a, y) = (a− y)2, the Bayes decision function is f ∗(x) = E[y|x], where the expectation
is over y. As before, we assume we know the data-generating distribution PX×Y .

• We’ll approach this problem by finding the optimal action for any given x. If somebody
tells us x, we know that the corresponding y is coming from the conditional distribution
y | x. For a particular x, what value should we predict (i.e. what action a should we
produce) that has minimal expected loss? Express your answer as a decision function
f (x), which gives the best action for any given x. In mathematical notation, we’re
looking for

f ∗(x) = arg min
a

E
[
(a− y)2|x

]
where the expectation is with respect to y. (Hint: There is really nothing to do here
except write down the answer, based on the previous question. But make sure you
understand what’s happening...)
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• In the previous problem we produced a decision function f ∗(x) that minimized the risk
for each x. In other words, for any other decision function f (x), f ∗(x) is going to be at
least as good as f (x), for every single x. In math, we mean

E
[
( f ∗(x)− y)2 | x

]
≤ E

[
( f (x)− y)2 | x

]
,

for all x. To show that f ∗(x) is the Bayes decision function, we need to show that

E
[
( f ∗(x)− y)2

]
≤ E

[
( f (x)− y)2

]
for any f . Explain why this is true. (Hint: Law of iterated expectations.)

Solution

1. Proof: Recall that Var(y) = Ey2 − (Ey)2, we have

E (a− y)2 = Var(a− y) + [E(a− y)]2 = Var(y) + (a−Ey)2 (3)

which means when a∗ = Ey, the bayes risk of a∗ has the minimum value Var(y).

1.6.2 Median Loss

Show that for the absolute loss ℓ(ŷ, y) = |y− ŷ|, f ∗(x) is a Bayes decision function if f ∗(x) is the
median of the conditional distribution of y given x.

• Hint: As in the previous section, consider one x at time. It may help to use the following
characterization of a median: m is a median of the distribution for random variable y if
P(y ≥ m) ≥ 1

2 and P(y ≤ m) ≥ 1
2 .

Note: This loss function leads to median regression. There are other loss functions that lead
to quantile regression for any chosen quantile. (For partial credit, you may assume that the
distribution of y | x is discrete or continuous. For full credit, no assumptions about the distribu-
tion.)
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